HARVARD

John A. Paulson

School of Engineering
and Applied Sciences

HARVARD Interpretability in Machine Learning for Epidemiological Forecasting

;I(.:.HI(.)IO.Lg: !:LIJBﬁCNHEALTH Emily Aiken & Jonathan Waring, APCOMP221

Problem Statement Results: Feature Importance Results: Clustering

: : : : : : Figure 3: K-means Clustering on Average Feature
» Time-series machine learning methods provide accurate * Southern states are important features to all other states. Importance for Random Forest (4-week Forecasts)

predictions of state-level influenza activity in the United
States up to eight weeks in advance, but lack
interpretability.

» For short time horizons of prediction (1-2 weeks), early
lags are important, for longer time horizons (4-8 weeks),
seasonal lags are more important and GRU attention

Distribution of RMSE Across States (Models Using Only Historical Epi Data) eXten dS furth er baCk,
1 Week Reporting Delay 2 Week Reporting Delay 4 Weck Reporting Delay 5 Week Reportng Delay
) » Whereas the important features in the linear regression
- ‘ & “ “‘ ‘ “ ‘ ‘ ‘ and random forest are vary across states, the same states
A 4 YV LY vV LI v VLl A come up as the most important for GRU predictions.

: Figure 1: Feature Importance for One Week in MA
We evaluate feature extract feature importance for (8-week Forecasts)

S everal maChine learning metho dS . 8-week Forecasts for ILI in MA

* We use averaging and clustering methods to evaluate
whether machine learning models pick up on known
spatiotemporal patterns of influenza spread.

Regression Coefficients in Linear Regression for Mar. 20, 2016
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Data and Methods

Feature Importances in Random Forest for Mar. 20, 2016

Figure 4: Comparison of HAC on Average Feature
Importance for LR and GRU (4-week Forecasts)

Lag

« Data: Weekly influenza case-counts for 37 states for the
years 2010-2017 fI’Om the CDC R7AK AL AR AZ DE GA I K3 KY LA MA MD ME M MN NC ND NE NH N NM NV NY OH OR FA AL SC S TN TX UT VA VI WA WI WV
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Hierarchical Agglomerative Clustering - LR Hierarchical Agglomerative Clustering — GRU (Positive Gradients)

major predictors.

Saliency Map for GRU for Mar. 20, 2016 - 0012 [
« Modeling Methods: Each model uses 52 historic lags g m oo =
from 37 states as input, we extract feature importance for - Hﬂ\ =l
the 37-by-52 input matrix in each week — &
L e e ..., - i
* Clustering Methods: We examine average influence of . e
each state on each other state, and cluster states by their E £
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Method Architecture |Feature Importance Figure 2: Averaged Cross-Influence Heatmaps by Model
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Linear LASSO (L1 Regression coefficients PN e I o,
Regression regularization) represent the influence of f = i f -,

each input feature on the o

prediction. gEEEEREER - f T Discussion
Random Ensemble of 50 Feature importance ?’j = fEis,oREes f :
Forest decision trees  represents how much each Ve bttt B " * Our methods pick up on intuitive temporal differences in

feature contributes to ﬁ?é@@;g&eé' SRR KB I ﬁ;gé;g it i e e et feature importance between models that predict at short

decreasing variance in the and long time horizons.

target after splitting. ' * We do not observe strong intuitive spatial relationships

. Il DR e S in feature importance. It is possible that repeating this
Gated One-layer GRU We extend CNN saliency ¢ il —— analysis on a higher spatial resolution (ex. city-level
Re?urrent with 5 nodes in maps [5] to O}II” re.g1jess10n ': S T = f influenza) would yield more intuitive spatial results.
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. e e R RS SRR RS view of the time series than the other methods, which
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